Comparison of ETCO$_2$-directed chest compressions to optimized chest compressions in a pediatric model of basic life support

JD Hamrick1, JT Hamrick1, JK Lee1, BH Lee1, RC Koehler1, DH Shaffner1

1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD

INTRODUCTION
- Successful cardiopulmonary resuscitation (CPR) requires the rapid and effective implementation of infrequently used skills.
- High-quality CPR is essential to generate blood flow to vital organs and to achieve return of spontaneous circulation (ROSC).
- Despite 20 years of research, survival to discharge from out-of-hospital cardiac arrest remains low.
- The most critically important CPR skill is the delivery of appropriate chest compressions; inadequate chest compressions can result in failed resuscitative efforts and/or permanent neurologic injury.
- Current American Heart Association guidelines recommend 100 chest compressions/minute at a depth of one-third to one-half the anteroposterior (AP) diameter.
- The recommended depth is empirically derived and difficult to accurately estimate and consistently perform.
- The recommended rate is inconsistently achieved without the aid of a timing device or invasive monitoring.
- The ideal model of CPR would take into account patient-specific geometry and hemodynamic realities, and would allow the rescuer to adapt as these variables change.
- A technically simple, widely available, noninvasive, real-time method of physiologic feedback that helps rescuers optimize the delivery of CPR could improve both rates of ROSC and neurologically intact survival.
- End tidal CO$_2$ (ETCO$_2$) monitoring is readily available, easily used, and a standard of care in the operating suite and critical care setting.
- ETCO$_2$ is a quantitative surrogate for pulmonary blood flow and therefore systemic blood flow, and has been shown to correlate well with cardiac output.
- ETCO$_2$ produced during CPR has been shown to have prognostic value for ROSC.
- ETCO$_2$ has been used to evaluate different modalities of chest compressions.
- ETCO$_2$ has not been evaluated as a physiologically responsive guide for the delivery of chest compressions.

OBJECTIVES
- To evaluate ETCO$_2$ as a physiologically responsive guide for the delivery of chest compressions.
 - When ventilation is held constant, ETCO$_2$ is dependent on pulmonary blood flow, which increases as CPR generates greater systemic blood flow.
 - Therefore, ETCO$_2$-targeted chest compressions should provide an objective measure of the adequacy of CPR.
 - ETCO$_2$-directed chest compressions should result in superior rates of resuscitation when compared to the standard guidelines.
- We compared outcomes of ETCO$_2$-directed chest compressions to those of optimal chest compressions.
- Outcomes included the level of ETCO$_2$, myocardial perfusion pressure (MPP), and the rates of ROSC.

MATERIALS AND METHODS
- 40 male piglets 3-6 days of age and weighing 2.1 ± 0.38 kg were randomly assigned to either the ETCO$_2$-directed or the optimized CPR group.
- All piglets underwent induction of general anesthesia, tracheostomy, placement of femoral central and arterial lines, and placement of a femoral venous perfusion wire.
- Ventricular fibrillation was induced.
- After a no-flow interval of 90 seconds, PBLS was started via either the optimized or ETCO$_2$-directed protocol.
- In the optimized CPR group, chest compressions were performed at the AHA-recommended depth and rate. Resuscitators were blinded to ETCO$_2$.

METHODS
- Comparison of ETCO$_2$ between groups was not statistically significant (p = 0.16), but after 6 minutes of CPR the ETCO$_2$-directed group had significantly higher levels. We were able to maintain ETCO$_2$ in the ETCO$_2$-directed group.
- The overall difference in ETCO$_2$ between groups was not statistically significant (p = 0.04), but after 6 minutes of CPR the ETCO$_2$-directed group had significantly higher levels. We were able to maintain ETCO$_2$ in the ETCO$_2$-directed group.
- The survival rate was not significantly different among groups, and there was no interaction between group and survival. The 10 minute ETCO$_2$ levels were significantly greater for survivors than non-survivors in the optimized group (p = 0.02). We were able to maintain ETCO$_2$ in both survivors and non-survivors in the ETCO$_2$-directed group.

RESULTS
- MAPs were significantly higher in the ETCO$_2$-directed group as compared to the optimized group (p = 0.04) and in survivors versus non-survivors of both groups (p = 0.001). MAP was significantly higher in the ETCO$_2$-directed survivors than in the optimized survivors at 10 minutes (p = 0.02).
- CVP was better maintained in the ETCO$_2$-directed group than in the optimized group (p = 0.04), was equivalent among survivors, and was highest in the non-survivors of the ETCO$_2$-directed group. The difference in CVP between survivors and non-survivors was not significant (p = 0.41).
- Overall MPP (MAP-CVP) was not different between the two groups.

RESULTS CONTINUED
- Survivors in both groups maintained MPPs >10 mmHg throughout PBLS resuscitation, whereas non-survivors consistently had MPPs <10 mmHg after 5-6 minutes of CPR, and this difference in MPP was related to survival (p = 0.02).
- The maintenance of ETCO$_2$ in the ETCO$_2$-directed group did not correlate with MPP, where there was correlation in the decline of MPP and ETCO$_2$ in the optimized group.

CONCLUSIONS
- Consistently achieving AHA guidelines for depth and rate of chest compressions is difficult in clinical practice.
- Additional equipment to ensure optimal CPR is being performed is impractical and/or unavailable.
- ETCO$_2$ levels were easily monitored and provided an objective measure of the adequacy of chest compressions.
- Using only ETCO$_2$ monitoring, we were able to gauge the effectiveness of chest compressions and provide resuscitation that was as effective as AHA-optimized CPR.
- The ETCO$_2$-directed method of CPR can help rescuers bring typical CPR up to the level of optimized CPR, and may improve the rates of ROSC and neurologically intact survival.