Different size cuffed ETT in children: the effect of size on intracuff pressure

Mumin Hakim MBBS, Senthil G. Krishna MD, Roby Sebastian MD, Heather L. Dellinger BSN, RN, Joseph D. Tobias MD

Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio

Background
- Khine formula for cuffed ETT [ETT = (age/4) + 3] a guide for cETT use in children
- In vitro experiment:
 - A seal was created inside a PVC pipe (to mimic the trachea)
 - The smaller cETT- a larger volume of air was needed to create a seal

The measured IP was also higher in the smaller cETTs (Table-1)

Methods
- IRB approval
- Patients 4 to 8 years of age
- Randomly assigned 2 groups:
 - Standard size (S): Based on the Khine formula
 - Smaller size (s): Half-size smaller
- Cuff inflated by air-leak test at a CPAP of 20 cmH₂O
- Air leak test was repeated if the IP was >30 cmH₂O, <10 cmH₂O or if there was an audible air leak during positive pressure ventilation
- After inflation of the cuff, the baseline IP was measured

Results
- 87 patients
- 42 (S); 45 (s)
- The volume of air required
 - S: 1.6 ± 0.3 mL
 - s: 1.6 ± 0.4 mL
- Baseline IP
 - S: 23 ± 5 cmH₂O
 - s: 41 ± 24 cmH₂O
- The mean air volume required and baseline IP of different age groups are shown in Table 2

Discussion
- Confirmation of in vitro findings:
 - The IP in the smaller sized cETTs was higher than the standard sized cETTs
 - The volume of air to inflate the cuff needed to achieve a seal of the airway at a CPAP 20 cmH₂O was similar
 - There seems to be no advantage to the use of a smaller cETT and in fact, the IP required to achieve a seal is higher

References
2. Paediatr Anaesth 2014;24:999-1004

Table 2: In vivo study: Air required to inflate the cuff to seal the trachea at a CPAP of 20 cm of H₂O and the corresponding baseline intracuff pressure (IP) and the number of patients (n):

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Volume of air in cuff (ml)</th>
<th>IP (cmH₂O)</th>
<th>Volume of air in cuff (ml)</th>
<th>IP (cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard size cETT</td>
<td>Smaller size cETT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.3 ± 0.9</td>
<td>30 ± 32 (9)</td>
<td>1.3 ± 0.6</td>
<td>42 ± 37 (13)</td>
</tr>
<tr>
<td>5</td>
<td>1.2 ± 0.5</td>
<td>21 ± 14 (17)</td>
<td>1.4 ± 0.3</td>
<td>38 ± 31 (13)</td>
</tr>
<tr>
<td>6</td>
<td>2.0 ± 1.4</td>
<td>24 ± 14 (6)</td>
<td>1.4 ± 0.5</td>
<td>28 ± 38 (11)</td>
</tr>
<tr>
<td>7</td>
<td>1.7 ± 0.6</td>
<td>21 ± 17 (7)</td>
<td>1.5 ± 1.0</td>
<td>18 ± 5 (5)</td>
</tr>
<tr>
<td>8</td>
<td>2.0 ± 0.5</td>
<td>18 ± 7 (3)</td>
<td>2.3 ± 0.4</td>
<td>80 ± 42 (3)</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>1.61 ± 0.3</td>
<td>23 ± 5 (42)</td>
<td>1.6 ± 0.4</td>
<td>41 ± 24 (45)</td>
</tr>
</tbody>
</table>

Table 1: In vitro study: Volume of air required to inflate the cuff to seal a PVC pipe and the corresponding intracuff pressure (IP)

<table>
<thead>
<tr>
<th>ETT size</th>
<th>Volume of air in cuff (ml)</th>
<th>IP (cmH₂O)</th>
<th>Volume of air in cuff (ml)</th>
<th>IP (cmH₂O)</th>
<th>Volume of air in cuff (ml)</th>
<th>IP (cmH₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 mm</td>
<td>1.6 ± 0.1</td>
<td>13 ± 1</td>
<td>1.9 ± 0.0</td>
<td>31 ± 3</td>
<td>1.6 ± 0.1</td>
<td>48 ± 5</td>
</tr>
<tr>
<td>4 mm</td>
<td>1.9 ± 0.0</td>
<td>31 ± 3</td>
<td>1.6 ± 0.1</td>
<td>48 ± 5</td>
<td>1.6 ± 0.1</td>
<td>48 ± 5</td>
</tr>
<tr>
<td>3.5 mm</td>
<td>2.0 ± 0.3</td>
<td>33 ± 4</td>
<td>1.7 ± 0.2</td>
<td>40 ± 5</td>
<td>1.5 ± 0.1</td>
<td>45 ± 5</td>
</tr>
</tbody>
</table>