Cost-Effectiveness Research in Neonatology and Pediatric Critical Care between 1983-2013: A Systematic Review

Tori Sutherland MD MPH1, Benjamin Kloesel MD2, Amy Vinson MD2

1. Department of Anesthesia, Pain Medicine and Critical Care, BIDMC, Boston, USA. 2. Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, USA

Abstract:

Introduction: In 2005, critical care costs were $81.7 billion in the United States. For an infant in the NICU, average daily costs exceed $3,500 and a single visit can cost more than $1 million.

Methods: A systematic review of the English language literature between 1980-2013 was conducted with an open-access cost-effectiveness analysis (CEA) registry, 4,007 CEA's were reviewed. Manuscripts that evaluated the cost-effectiveness of critical care interventions among neonates and pediatric patients (<18 years) were selected.

Results: Thirty-eight CEA's were included. Interventions were associated with cost savings and cost per QALY ranging from $986 to $2,500,000. Scenarios that were not cost-effective (QALY >$50,000) were often confounded by birth weight and gestational age.

Discussion: The pediatric cost-effectiveness literature is largely focused around the neonatal period. Cost-effective interventions include selective palivizumab prophylaxis, screening for retinopathy of prematurity (ROP) and surgical repair of life-threatening congenital defects.

Background:

- Critical Care Costs in the US
 - Total costs (2005): $81.7 billion
 - 13.4% of all hospital costs
 - 0.66% gross domestic product (GDP)
- Neonatal/Pediatric ICU Costs
 - Daily cost per bed: $3,500
 - H-CLP KID registry (long-term NICU stays)
- Average patient weight: 1470 g (SD 112 g) at birth
 - Average length of stay: 228 days
 - Average cost per stay: $703,356 (SD $19,846)
- Improved survival rates of extremely low-birth weight (ELBW) neonates (<1,000 g)
 - 41% of NICU stays >6 months
- Utilization of high-cost interventions
 - Extracorporeal membrane oxygenation (ECMO)
 - Palivizumab
 - Inhaled nitric oxide
- What is an acceptable cost for care?
 - 50,000 per quality-adjusted life-year (QALY) or life-year (LY); £30,000 in UK Pounds
- Less consensus on international standard in Pediatrics

Methods:

- 4,007 original CEA's published between 1980-2013 reviewed
- Maintained in open-access cost analysis registry
- Two reviewers with advanced training selected critical care interventions/treatments
- QALY/LY ratios summarized by intervention category in 2015 USD and USD value in year of analysis for comparison

Results:

- Thirty-eight CEA's identified
- Treatment categories included: general NICU care, cardiac and respiratory failure and Palivizumab prophylaxis
- >80 cost-effectiveness ratios
- Cost-saving/Dominant interventions:
 - Prophylactic intravenous, NICU vaccination booster campaign, ECMO for respiratory failure
- Cost-effective interventions:
 - Surgical repair of life-threatening congenital defects, selective Palivizumab use, ECMO for bridge to transplant
- Dominated interventions (increased cost with worse outcomes): Universal vs. selective resuscitation of neonates born at 20-23 6/7 weeks
- Majority of results based upon Markov/Monte Carlo outcomes simulations with registry/clinical trial data

Conclusions:

- Unexpected interventions, such as ECMO, found to be cost-effective or cost saving
- Additional research needed to verify clinical effectiveness of several interventions (i.e. inhaled Nitric Oxide by gestational age)
- Reliance on outcomes models noted; should be followed up with clinical trial if model demonstrates that the intervention is cost-effective
- Literature volume inadequate given the rising cost of critical care and rapid development of new interventions

References:

Figure 1. PRISMA diagram detailing manuscript selection process

Table 1. Summary of CEA results

<table>
<thead>
<tr>
<th>Study, year, cost</th>
<th>Intervention</th>
<th>Cost/QALY ($ USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=308</td>
<td>Palivizumab prophylaxis for NICU infants</td>
<td>$350,000</td>
</tr>
<tr>
<td>N=308</td>
<td>Palivizumab prophylaxis for NEU workers</td>
<td>$250,000</td>
</tr>
<tr>
<td>N=308</td>
<td>Palivizumab prophylaxis for neonates <12 weeks gestational age</td>
<td>$300,000</td>
</tr>
</tbody>
</table>

- Palivizumab prophylaxis for NICU infants dominated, but remains cost-effective by 2015 USD
- Palivizumab prophylaxis for NEU workers remains cost-effective by 2015 USD
- Palivizumab prophylaxis for neonates <12 weeks gestational age remains cost-effective by 2015 USD

Manuscripts excluded:

- (n=3,966)
- (n=4,007)