Environmental Impact of Radiation Oncology on Adverse Events, A Report from Wake Up Safe, the Pediatric Anesthesia Quality Improvement Initiative

Robert E. Christensen, Jeffrey C. Waldman, Rebecca C. Nause-Osthoff, Jason W.D. Hearn, Daniel E. Spratt

Department of Anesthesiology, Division of Pediatric Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA

Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA

Introduction/Study Question

- Radiation therapy in pediatric patients often requires anesthesia
- The environment presents challenges to anesthetic care
 - Isolated treatment location in hospital
 - Physical barriers to prevent radiation exposure
 - Remote monitoring
 - Patient isolation
- Individual institutions have reported outcomes
- This case series aims to:
 - Review a multicenter registry of significant adverse events (SAE)
 - Make recommendations for improved care

Methods

- Data extracted from The Wake Up Safe Pediatric Anesthesia Quality Improvement Initiative
- Criteria:
 - SAE in radiation oncology during anesthetic care
 - Patient age < 18 years
- Additional data: Patient demographics, comorbid conditions, contributing events, management details, outcomes

Results

- Four SAE identified
 - Medication administration errors (2)
 - Laryngospasm (2)
 - Unanticipated intubation (2)
 - Cardiac arrest (1)
- Overall unable to determine incidence of complications due to generic billing codes

Discussion

- Impact of treatment environment:
 - Remote monitoring of the patient and equipment via camera may have delayed recognition of medication administration errors
 - Prolonged, unmonitored patient transport to the recovery area may have affected prompt detection and treatment of laryngospasm
 - Facial mask for radiation therapy may have concealed copious secretions and/or restricted access to the airway, precipitating a laryngospasm
- Recommendations:
 - Orient cameras to include the patient, monitors and infusion pumps to reduce medication administration errors
 - Continuously monitor oxygenation and/or ventilation throughout treatment, transport and recovery
 - Recover patients in a nearby area to limit transport time as patients may be emerging from anesthesia
 - Take care during radiation therapy mask creation to maintain airway patency and access

Table 1:

<table>
<thead>
<tr>
<th>Case</th>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6yo, ASA 3 for CT simulation with LMA. At the end, CT sim mask removed and patient had copious clear secretions. Complication: Laryngospasm. Management: Oxygen, positive pressure mask ventilation, succinylcholine, chest compressions, intubation, albuterol. Hospital course: Extubated and admitted to PICU, stridor requiring IV steroid therapy.</td>
</tr>
<tr>
<td>2</td>
<td>2yo, ASA 4 undergoing radiation therapy with natural airway and propofol infusion. En route to PACU, the patient became dusky and was found to be in laryngospasm. Complication: Hypotension. Management: Ephedrine and IV fluid bolus. Hospital course: Uncomplicated.</td>
</tr>
<tr>
<td>3</td>
<td>3yo, ASA 3 for CT simulation with LMA. At the end, the mask was removed and patient had copious clear secretions. Complication: Laryngospasm. Management: Oxygen, positive pressure mask ventilation, succinylcholine, intubation, albuterol. Hospital course: Admitted to PICU.</td>
</tr>
<tr>
<td>4</td>
<td>2yo, ASA 4 undergoing radiation therapy with natural airway and propofol infusion. The patient received a propofol overdose from a pump programmed for mg/kg/min instead of mcg/kg/min. Recognized when patient became alarmed almost empty. Hypotension treated with ephedrine and IV fluid.</td>
</tr>
</tbody>
</table>

References